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Abstract. In this paper, we develop a consistent extension of RPA for bosonic systems. In order to illustrate
the method, we consider the case of the anharmonic oscillator. We compare our results with those obtained
in mean-field and standard RPA approaches with the exact ones and show that they are very close to these
ones.
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1 Introduction

In many domains of physics perturbation theory fails
to describe physical phenomena correctly. For example,
bound states or collective excitations cannot be described
perturbatively. In particular, in the low-energy regime of
strong interactions non-perturbative effects play an impor-
tant role. Although much progress has been made in un-
derstanding the hadronic world, it is still indispensable to
develop non-perturbative, symmetry conserving methods.

In the last few years much effort has been made
to apply non-perturbative techniques well established
in many-body theory to quantum field theory (see,
e.g., refs. [1–4]). In this article we will concentrate on
approaches related to the random phase approximation
(RPA). In its standard form the RPA is known to respect
symmetries. For example, in ref. [2] it has been demon-
strated within a linear σ-model that the RPA fluctuations
generate the Goldstone bosons related to the sponta-
neously broken global (chiral) symmetry. At mean-field
level, on the contrary, these soft modes do not emerge.
Thus, the RPA seems to be a method very well suited to
treat non-perturbative systems with spontaneously bro-
ken symmetries. Nevertheless it has some shortcomings:
It is not of variational character and, therefore, does not
necessarily fulfill the Rayleigh-Ritz criterion. In addition,
it is not self-consistent, and therefore the intermediate
states (corresponding to the mean-field quasiparticles) do
not coincide with the final RPA particles. In particular,
even if the RPA states show up as massless Goldstone
modes, the intermediate states are massive. This has
been pointed out by Aouissat et al. [3,5] in the context
of pionic excitations in an O(N) model.
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It is obvious that this self-consistency problem can
be circumvented in 1/N expansions [3,5,6]. On the other
hand, a fully self-consistent approximation such as self-
consistent RPA (SCRPA) [7] is desirable. This method
has already been applied successfully to fermionic sys-
tems, e.g., to the Hubbard model [8] and the seniority
model [9]. For a bosonic field theory a first attempt in
this direction has been made in ref. [4]. There, some of
the correlations are included, which are not present in the
mean-field ground state used in standard RPA. This pro-
cedure, however, causes serious problems: In particular, it
does not preserve covariance, an essential ingredient of a
relativistic quantum field theory.

In order to establish a consistent method and to clearly
state the problems related to the treatment of a bosonic
system in an extended RPA formalism, we will reduce the
dimension of the system. Instead of a λΦ4 theory as in
ref. [4] we will study a one-dimensional anharmonic os-
cillator. Of course this is a purely quantum-mechanical,
non-relativistic system and we cannot certainly tackle the
problem of covariance. Nevertheless, we can isolate some
of the inherent contradictions related to bosonic systems.
It has to be examined within a future work whether the
method presented here is able to preserve covariance.

Our toy model, the anharmonic oscillator, has the ad-
vantage that exact results are known and that we can
directly compare the results obtained in different ap-
proximation schemes with those obtained by solving the
Schrödinger equation. It has already been used as a test
ground, e.g., for coupled cluster techniques [10] or first
attempts within SCRPA [11].

The article is organized as follows: We begin with
presenting the RPA equations in sect. 2. In sect. 3, we
review the Hartree-Fock (mean-field) approximation to-
gether with the standard RPA. The renormalized RPA



36 The European Physical Journal A

(r-RPA) and its problems are discussed in sect. 4. In
sect. 5, we present our extended r-RPA approach. Sec-
tion 6 is devoted to a discussion of the numerical results,
in particular for the ground-state energy, obtained within
the different approximation schemes. Finally, in sect. 7,
we will draw our conclusions.

2 The RPA equations

First of all, we have to state our starting point, the RPA
equations. There are mainly two different ways to derive
the RPA equations: the equation-of-motion method due
to Rowe [12] and the Dyson-Schwinger approach [13]. To
derive the former, we suppose that we can generate an
excited state |ν〉 by the action of an operator Q†

ν on the
ground state |gs〉: |ν〉 = Q†

ν |gs〉, |gs〉 being the vacuum of
Qν . Obviously Q†

ν is a highly non-trivial many-body op-
erator. Depending on the nature of |ν〉 (excited state with
the same number of particles or excited state with a differ-
ent number of particles),Q†

ν can be seen as a superposition
of (non-Hermitian) one-, two- or more-body operators. In
general, Q†

ν is expressed in the following form:

Q†
ν =

∑
α

Xν
αA

†
α , (1)

where A†
α contains all the chosen excitation operators ex-

pressed in terms of ai and a†i (annihilation and creation
operators) and α represents all quantum numbers. More-
over, minimization of the energy Eν = 〈ν|H|ν〉 with re-
spect to a variation δQν leads to a system of equations,
whose solution gives the amplitudesXν

α and the excitation
energies

〈gs| [δQν , [H, Q†
ν ]

] |gs〉 = (Eν −E0)〈gs|[δQν , Q
†
ν ]|gs〉 , (2)

where E0 represents the energy of the ground state |gs〉.
In the Dyson-Schwinger approach, which will be used

in this paper, one starts from the definition of a time-
ordered Green’s function at zero temperature in equilib-
rium (the generalization to finite temperature is direct):

Gαβ(t, t′) = −i〈gs|T
(
Aα(t) A

†
β(t

′)
)
|gs〉 , (3)

where T is the time-ordering operator and A and A†
depend on time via A(t) = eiHtA(0)e−iHt, where H is
the exact Hamiltonian. In equilibrium the above two-time
Green’s function1 is a function of the time difference t− t′
so that the Fourier transform G(E) depends only on one
frequency. Our aim is to derive a Dyson equation forG(E).
If we define

Gαβ(t, t′) =
∫

dE
2π

e−i E (t−t′) Gαβ(E) , (4)

1 Note that we deal with a two-time Green’s function. This
means that, if, e.g., A = a†a†, both particles are created at the
same time.

the result is

EGαβ(E) = Nαβ +
∑
β′,γ

DCαβ′N−1
β′γ Gγα(E) , (5)

with

Nαβ = 〈gs|[Aα, A
†
β ]|gs〉 ,

DCαβ = 〈gs|[[Aα,H], A
†
β ]|gs〉 . (6)

It has to be noted that the operators entering the above
eq. (6) have to be taken at equal times since the truly
dynamical contribution has been omitted (see, e.g., the
derivation in refs. [8,14]).

One can show that the two methods mentioned above
are strictly equivalent, provided that [14]

〈gs|[H, [Aα, A
†
β ]]|gs〉 = 0 . (7)

Of course, if |gs〉 is the exact ground state, i.e., an eigen-
states of the Hamiltonian, this relation is automatically
satisfied. Within an approximation this needs, however,
not to be the case. Nevertheless, in most practical sit-
uations, including our treatment of the anharmonic os-
cillator, it can be shown that both methods are indeed
equivalent.

Obviously it is not possible to include the complete
Hilbert space of excitation operators in A and it is nec-
essary to restrict it. In principle the approximation can
straightforwardly be refined by enlarging the space of ex-
citation operators contained in A. But, in practice this of-
ten turns out to be a very difficult task because, on the one
hand, the dimension of the RPA matrix to be diagonalized
increases and, on the other hand, there exist consistency
problems for the theory itself (see the next section).

Another crucial point in solving the above RPA equa-
tions, eq. (5), is the way in which the expectation values
are determined since the exact ground state is not known.
It is, however, clear that it strongly influences the quality
of the approximation. In standard RPA the exact ground
state is usually replaced by a mean-field (Hartree-Fock)
one. But we will show in the next section, using as an ex-
ample the anharmonic oscillator, that it is possible to take
into account an important part of the correlations present
in the exact ground state in a fully consistent way.

3 The model in standard RPA

We start from the Hamiltonian of an anharmonic oscillator
with quartic coupling

H =
p2

2
+ µ2X

2

2
+ gX4 (8)

with constants µ2 < 0 and g > 0. In the following sections,
µ̃ ≡ √|µ2|. This Hamiltonian can be rewritten as

H =
p2

2
+

X2

2
+ (µ2 − 1)

X2

2
+ gX4 (9)
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and can be seen as a harmonic oscillator disturbed by a
potential V (X) = (µ2 − 1)X2

2 + gX4. We introduce the
usual destruction and creation operators a and a† defined
by a = (µ̃X + ip)/

√
2µ̃. The basis for standard RPA is

the mean-field approximation which is usually formulated
with the help of a Bogoliubov transformation. Thereby
the starting point is the following trial wave function (see,
e.g., ref. [10]):

|HF〉 = e(ua†+ 1
2 ta†2)|V 〉 , (10)

with variational parameters u and t. |V 〉 is the vacuum of
the initial destruction operator a: a|V 〉 = 0. The destruc-
tion operator of the Hartree-Fock vacuum b|HF〉 = 0 can
be expressed with the help of u and t:

b = (1− t2)−1/2(a− ta† − u) . (11)

For later convenience we define ω ≡ µ̃(1 − t)/(1 + t) and
s ≡ √

2/µ̃ u/(t − 1). In terms of the new creation and
destruction operators, we then obtain

x ≡ X + s =
1√
2ω

(b+ b†) ,

p = −i

√
ω

2
(b− b†) , (12)

which makes the role of the variational parameters ob-
vious: s simply describes a translation in space and ω a
modified frequency of the oscillator. The Hamiltonian can
be cast into the following form:

H = −ω

4
(b− b†)2 +

µ2 + 12gs2

4ω
(b+ b†)2

−sµ2 + 4gs3

√
2ω

(b+ b†)− 4sg√
8ω3

(b+ b†)3

+
g

4ω2
(b+ b†)4 + gs4 +

µ2s2

2
. (13)

The aim of the Bogoliubov transformation is to select
the best basis in the sense that the parameters ω and
s minimize the mean-field ground-state energy, EHF

0 =
〈HF|H|HF〉. These two parameters are thus determined
by: ∂EHF

0
∂s = 0, ∂EHF

0
∂ω = 0. As can easily be checked by a

direct calculation, the above equations are equivalent to
the so-called “gap equations”:

∂EHF
0

∂s
= 0 ⇔ 〈HF|[H, b]|HF〉 = 0 ,

∂EHF
0

∂ω
= 0 ⇔ 〈HF|[H, b b]|HF〉 = 0 . (14)

If |HF〉 was the exact ground state, the above gap
equations would be satisfied automatically. However, the
deeper origin of these equations (minimization of the
ground-state energy with respect to the Bogoliubov pa-
rameters ω and s) implies that they have always to be
satisfied.

Let us now discuss the RPA corrections to the ground-
state energy. In standard RPA the excitation operator
A entering the RPA equations, eqs. (5), is taken to be
A ∈ {b, b†, bb, b†b†}. We define the RPA ground-state en-
ergy as follows:

ERPA
0 = 〈RPA|H|RPA〉 . (15)

This expression involves expectation values of the type
〈RPA|AB|RPA〉. These RPA corrected values can be cal-
culated from the RPA Green’s functions in the limit t → t′

〈RPA|AB|RPA〉 = i

∫
dE
2π

GAB(E) . (16)

It is in this way that we introduce RPA fluctuations in the
calculation of the ground-state energy.

In standard RPA the Green’s functions on the right-
hand side of eq. (16) are not determined self-consistently,
i.e., the expectation values entering the Green’s functions
themselves are determined using the mean-field ground
state |HF〉. In our simple toy model we can obtain analytic
expressions for the Green’s functions.

Note that from eqs. (5) we do not directly obtain
Green’s functions like Gx,x2 or Gp,p, for example, since
the operators x, x2, and p are not contained in our set
of excitation operators {b, b†, bb, b†b†}. Hence, in order to
apply eq. (16) to expectation values like 〈x3〉 or 〈p2〉, the
operators x and p are expressed in terms of b and b† (cf.
eq. (12)), and the resulting expectation values like 〈bbb〉,
〈b†bb〉, 〈bb〉, etc., are obtained from the Green’s functions
Gb,bb, Gb†,bb, Gb,b, etc2. The short-hand notation Gx3 or
Gp2 has to be understood as the corresponding linear com-
bination of Green’s functions like Gb,bb, Gb†,bb, Gb,b, etc.,
needed for the calculation of 〈x3〉 or 〈p2〉.

To determine ERPA
0 we need, in addition to 〈x2〉, 〈p2〉,

and 〈x3〉, also the expectation value 〈x4〉. However, Gx4

contains Green’s functions of the type Gb†,bbb, that is,
A ∈ {b, b†, bb, b†b†} is not sufficient to calculate 〈x4〉 3. We,
thus, approximate this term by a factorization:

〈RPA|x4|RPA〉 � 3〈RPA|x2|RPA〉2 . (17)

Finally, note that in the symmetric case (s = 0), the three-
operator expectation values vanish, which implies that the
Green’s functions are the Hartree-Fock ones

i

∫
dE
2π

Gs=0
x2 (E) = 〈HF|x2|HF〉 (18)

Hence, in this case the RPA energy is equal to the mean-
field one.

In the literature the term RPA is used for a similar ap-
proximation to the Green’s functions as described above.

2 Note that there is an ambiguity in the assignment of the
time arguments to some of the Green’s functions. This does,
however, not influence the results (see appendix A for a more
detailed discussion).

3 Since the excitation operators have to be non-Hermitian,
two-particle operators of the form b†b are not allowed. Thus
we cannot use, e.g., Gb†b,bb to determine Gx4 .
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But, it has to be mentioned that often the charging for-
mula [4,15],

E0 = EHF +
∫ 1

0

dλ
λ
〈λ|Hint(λ)|λ〉 , (19)

is applied to determine the ground-state energy. Thereby
Hint(λ) = λHint and the state |λ〉 is defined as the ground
state with respect to H(λ) = Hbare + λHint, where Hint is
the interacting part of the Hamiltonian.

But, what we want to do is to compute directly
〈gs|H|gs〉 with |gs〉 = |HF〉, |RPA〉 or |0〉 (see next sec-
tion) and compare the result obtained within the different
approximations. Thus again, ERPA

0 is not the energy as
understood in standard RPA but directly 〈RPA|H|RPA〉.

4 The renormalized RPA approach

What we want to do now is to go beyond the standard
RPA approach and retain some of the correlations in the
ground state. The starting point will be again the Bo-
goliubov transformation described in sect. 3. In contrast
to standard RPA we will, however, not use the mean-field
ground state |HF〉 but a more complicated one denoted |0〉.
This new ground state, which will not be constructed ex-
plicitly in the following, contains some correlations. Since
we want to use the “best” one, the parameters ω and s will
be again determined by the minimization of the ground-
state energy E0 = 〈0|H|0〉. This leads to the generalized
gap equations:

∂E0

∂s
= 0 ⇔ 〈0|[H, b]|0〉 = 0 , (20)

∂E0

∂ω
= 0 ⇔ 〈0|[H, b b]|0〉 = 0 , (21)

which are analogous to 〈0|[H, Q†
ν ]|0〉 = 0 with the formal-

ism introduced in sect. 2. We may note that the equiva-
lence between these formulas is no longer valid if we con-
sider three particle excitation operators (see sect. 5 for
further details).

More precisely, independent of the approximation
made to include correlations in the ground state, the above
equations will guarantee that the basis is the energetically
most favored one whithin this approximation.

In the remaining part of this article we will assume
that all expectation values of the type 〈0|bb|0〉, 〈0|bb†|0〉,
〈0|bbb†|0〉, etc. are real. This implies, for example, that
〈0|p x|0〉 = −i/2 or 〈0|p x2|0〉 = 0, independently of the
specific ground state used. Thus, the key point is to de-
termine the remaining expectation values in the a priori
unknown ground state |0〉. In renormalized RPA [12,16–
18] this is achieved with the use of Green’s functions in
the limit t → t′. More precisely, we get self-consistency
conditions for expectation values with two operators, i.e.,
〈0|x2|0〉 and 〈0|p2|0〉 from

〈0|AB|0〉 = i

∫
dE
2π

GAB(E) . (22)

In contrast to eq. (16), the expectation values entering
the Green’s functions on the right-hand side of the above
equation are determined self-consistently, i.e., not within
the Hartree-Fock ground state. The remaining expectation
values are approximated using a factorization, e.g.,

〈0|p2x2|0〉 = 〈0|p2|0〉〈0|x2|0〉+ 2〈0|px|0〉2 . (23)

This means that the self-consistent procedure is limited to
expectation values with at most two operators and that
the correlated part of the expectation values with more
than two operators is neglected [4]. Moreover, since 〈x〉
vanishes, it follows immediately that terms with three op-
erators such as, e.g., 〈x3〉 vanish.

As for the standard RPA analytic expressions for the
Green’s functions can be given in terms of 〈x2〉, 〈p2〉 and
〈p x〉 (see appendix A). The latter expectation values have
then, in principle, to be determined numerically via the
self-consistency conditions, eq. (22). With these values at
hand, we are able, in principle, to calculate the ground-
state energy E0. However, renormalized RPA is known
to miss an important part of the correlation energy [19].
Besides, this method cannot be derived via a variational
principle and, therefore, the Ritz criterion is no longer
applicable. In fact, what happens in most cases, is that the
ground state obtains overbinding [19]. In our case it is even
worse since one can show that a contradiction with the
virial theorem and the Heisenberg uncertainty principle
occurs. To that end let us look at the explicit equation
for 〈p2〉, which is obtained by integrating Gp2(E), given
in eq. (A.6), over E. The result is

〈p2〉 = i

∫
dE
2π

Gp2(E) = ε2〈x2〉

+i
4(12sg)2〈p2〉

ε2

∫
dE
2π

1
(E2 − E2

1)(E
2 − E2

2) ,

where ε, E1 and E2 are defined in eq. (A.7). If we now
look at the explicit form (eq. (A.9)) of the gap equation
for ω, we conclude that the second term on the right-
hand side should vanish. However, this is only possible
for 〈p2〉 = 0, implying a vanishing kinetic energy. This is
obviously not a physically reasonable solution as it is in
contradiction to the virial theorem. Even if we forget for
the moment this contradiction, the self-consistent proce-
dure cannot give the right values for the occupation num-
bers and consequently for the energy. A possible way to
circumvent that problem, that is to compute correctly the
energy, is to use the “charging formula” as developed, e.g.,
in [4]. It is applied in a similar way as in standard RPA
(cf. sect. 3) to compute the correlation energy. The main
difference is that we now have in principle a closed sys-
tem of equations which have to be solved self-consistently.
Following [4], one therefore replaces the gap equation con-
cerning s, eq. (20), by a minimization of the ground-state
energy obtained with the help of the charging formula (cf.
eq. (19)). This has, of course, one disadvantage: One loses
the symmetry of the double commutators, i.e.

〈[b, [H, b†b†]]〉 − 〈[b†b†, [H, b]]〉 = 〈[H, b†]〉 �= 0 . (24)
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This symmetry property, however, is crucial for the stabil-
ity of the system [20]. We will therefore proceed in another
direction.

5 The extended r-RPA approach

Instead of using the charging formula, our strategy to in-
clude further correlations in a minimal way will be as fol-
lows: We will abandon the factorization approximation for
the lowest non-vanishing expectation values of products of
more than two operators.

For the deformed case (s �= 0) this means that we will
keep the values of 〈x3〉 and 〈p2 x〉 (these are the only non-
vanishing expectation values of three operators). Similar
to 〈x2〉 and 〈p2〉, their actual values are determined via
the self-consistency conditions, eq. (22). With these ex-
pectation values at hand the ground-state energy is then
obtained, as before, as the expectation value of the Hamil-
ton operator (cf. eq. (13)):

Es �=0
0 =

〈p2〉
2

+
µ2

2
(〈x2〉+ s2)

+g(3〈x2〉2 + s4 + 6s2〈x2〉 − 4s〈x3〉) . (25)

First of all we have to note that there is no longer any
obvious contradiction with the virial theorem. Moreover,
as we will see in the next section, as far as we are not too
close to the “phase transition”, our results for the ground-
state energy are very close to the exact ones, without any
further manipulation, like, e.g., the charging formula. This
means 〈x3〉 and 〈p2 x〉 contain already an important part
of the so far missing correlations. This does not necessarily
imply that we also reproduce the exact values for, e.g.,
〈x2〉 or 〈p2〉. But the correlations are combined in such a
way that the energy is determined very precisely within
this approximation.

If we try to go further and include, e.g., also the cor-
related part of expectation values with four operators, we
face serious problems. To obtain the Green’s functions
necessary to calculate 〈x2〉, 〈p2〉, 〈p x〉, 〈x3〉 and 〈p2 x〉 it
suffices to restrict the space of excitation operators to
A = {b, b†, bb, b†b†}, i.e., two-particle excitations. As long
as we stay in that space, the gap equations together with
the assumption of real expectation values for 〈bb†〉, etc.,
guarantees the symmetry of the double commutators. As
already discussed in sect. 3, we need Green’s functions of
the typeGb†,bbb to obtain, e.g., 〈x4〉. That is, three-particle
excitation operators have to be included. In addition to
the (practical) computational problems we encounter an-
other difficulty: As mentioned in sect. 3, the Bogoliubov
transformation contains only two parameters and conse-
quently, including three particles implies a priori an ap-
proximation for the double commutators since there is no
relation to enforce their symmetry. For instance, to ensure
the following symmetry relation:

〈[bb, [H, b†b†b†]]〉 − 〈[b†b†b†, [H, bb]]〉 = 6〈[H, b†b†b]〉 , (26)

we needed an equation which guarantees 〈[H, b†b†b]〉 = 0.
As mentioned above the Bogoliubov transformation does

not provide us with an additional adjustable parameter.
The assumption of a generalized gap equation of the form
〈[H, Q]〉 = 0 as used in many RPA approaches also did
not help. In this context boson expansion techniques [3,
5], mapping a pair of bosons onto one new boson, could
be helpful.

In the symmetric case s = 0, it is known that, by par-
ity, 〈x3〉 and 〈p2 x〉 vanish. Following the same underlying
philosophy as in the deformed case, we are now led to in-
clude 〈x4〉, 〈p4〉 and 〈p2 x2〉. This is, as stated above, a sub-
tle task since the double commutators need no longer to
be symmetric. Fortunately, this difficulty can be overcome:
Although in principle there are inherent problems with the
symmetry of the double commutators, one can explicitly
check that all non-symmetric terms disappear for s = 0.
This enables us to solve the Dyson equation without sym-
metrizing by hand (as it is often done in nuclear physics
[20]). The corresponding Green’s functions are listed in
appendix A. The expectation values 〈x2〉, 〈p2〉, 〈x4〉, 〈p4〉
and 〈p2 x2〉 are then determined self-consistently using
eq. (22). In this case the ground-state energy is given by

Es=0
0 =

〈p2〉
2

+
µ2

2
〈x2〉+ g〈x4〉 . (27)

As can be seen in the next section, the numerical results
for the ground-state energy are in very good agreement
with the exact ones.

We have to emphasize that our approach is not fully
self-consistent in the sense of SCRPA, although the ex-
pectation values of up to three or four operators, respec-
tively, are calculated self-consistently. Let us mention one
point which enlightens the difference of our method to
the SCRPA approach used in ref. [11]. The authors use
the following form for the RPA excitation operator:

Q† =
1√
2
(λb†b† − µbb) . (28)

This relation is easily inverted to give bb and b†b† in terms
of Q† and Q. Then the relation

Q|SCRPA〉 = 0 (29)

can be applied to show that, e.g., 〈bb〉 vanishes. Our
excitation operator contains in addition one- and three-
particle operators, proportional to b, b† and bbb, b†b†b†, re-
spectively. This renders the inversion less obvious and we,
therefore, cannot directly make use of eq. (29). Thus, a pri-
ori, we have to calculate several expectation values which
can be shown to vanish within the SCRPA formalism of
ref. [11]. The SCRPA results for the ground-state energy
in the symmetric case are also in very good agreement
with the exact ones [11].

6 Numerical results

This section is devoted to a discussion of the numerical re-
sults. In fig. 1 the energy of the ground state is displayed
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Fig. 1. Exact solution for the ground-state energy (solid line),
mean-field solution (dashed line), RPA solution (dotted line)
and our extended r-RPA solution (dashed-dotted line) as a
function of µ2/g with g = 0.5. Following [10], we added µ4/8
in order to have positive energies. In the region where s = 0
the mean-field and the RPA solution coincide (see text).

within the different approaches (exact result, mean-field,
RPA, and our extended r-RPA result) as a function of
µ2/g. Of course, even the mean-field result is in reason-
able agreement with the exact results (10% at worst). The
largest discrepancy can be observed in the region near the
“phase transition” at µ2/g ≈ −6.8, i.e., where s jumps
from some value s �= 0 to s = 0. This is also the case for
the RPA and our r-RPA approach. But the figure clearly
shows that the correlations incorporated in our approach
are important: The agreement with the exact result is
much better than in mean field or RPA and discrepan-
cies show up only in a very small region. Note that, the
curve obtained within our approach is not continuous at
the transition point. This is of course due to the differ-
ence in approximations made in the two domains: In one
case, s �= 0, one has incorporated the effect of 〈x3〉 and
〈p2 x〉, whereas in the other case, s = 0, we have included
correlations in 〈x4〉, 〈p4〉 and 〈p2 x2〉. Near the transition,
also higher-order correlations become important, and we
therefore miss the exact result near the transition point.

Before we come to the conclusion, we would like to
give one explicit example concerning the difference of
our approach to the SCRPA: For µ2/g = −1, we obtain
〈b†bbb〉 = −0.033 and 〈b†b†bb〉 = 0.026, i.e., both expec-
tation values are of the same order of magnitude. In the
SCRPA approach used in ref. [11] the former expectation
value vanishes identically.

7 Conclusion

We have considered an extended version of renormalized
RPA that yields values of high accuracy for the ground-
state energy of the anharmonic oscillator. Moreover, the
self-consistent procedure developed here removes contra-
dictions present in renormalized RPA, that is 〈x2〉 and

〈p2〉 can be determined without evidently violating the
virial theorem or the Heisenberg uncertainty principle.

This means that the correlations included, 〈x3〉 and
〈p2 x〉 for s �= 0 and 〈x4〉, 〈p4〉 and 〈p2 x2〉 for s = 0, rep-
resent the most important part of the correlations missed
in renormalized RPA. Furthermore, the systematics of the
method allow us to think that it can be easily applied to
quantum field theory and cure some of the problems which
emerged in the work of ref. [4]. One problem of our ap-
proach, on which we certainly should improve, is the fact
that we do not have a unified approach for the two cases
s = 0 and s �= 0.

Of course, it should be mentioned that there exist
other powerful methods such as CCM (Coupled Cluster
Method) [10] that describe very accurately the proper-
ties of the anharmonic oscillator. For problems concerning
quantum chemistry or solid state physics, this technically
and numerically very involved method and its extensions
(see [10] for further details) are probably the most precise
and well suited. Actually, the approach developed in this
paper probably cannot compete with CCM in all these sit-
uations. Nevertheless, it has the great advantage to iden-
tify clearly the underlying physics (correlations) and to be
very easy to use.
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Z. Aouissat and A. Rabhi. We also would like to thank
G. Chanfray and P. Schuck for their constant interest in this
work. One of us (M.O.) would like to thank the Alexander von
Humboldt foundation for financial support.

Appendix A. Explicit expressions for the
Green’s functions

We present here the analytical results for the various
Green’s functions needed throughout the calculation. Note
that the Green’s functions listed below do not directly
emerge from the solution of the system of eqs. (5) but we
have to re-express operators containing x and p with b and
b†, cf. eqs. (12). For instance

G:x4:(E) =
1
4ω2

G:(b+b†)4:(E) =

1
4ω2

(Gbb,bb(E) +Gb†b†,b†b†(E) + 2Gb†b†,bb(E)

+4Gb†,bbb(E) + 4Gb†b†b†,b(E) + 4Gb†b†,bb(E)) . (A.1)

One point is worth noting: We are dealing (in configura-
tion space) with two-time Green’s functions and the no-
tation GA,B(E) indicates that the time arguments for the
corresponding Fourier transformed quantity GA,B(t − t′)
are assigned as A(t), B(t′). This means that there is an
ambiguity in the assignment of time arguments to the
Green’s functions which contain more than two operators.
In most cases this can be overcome by the fact that our ex-
citation operators are limited to non-Hermitian ones, i.e.
an operator like b†(t)b(t) cannot exist. But, Gbb,bb(E) as
well as Gb,bbb(E) do exist and in general they do not lead
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to the same expression. We are, however, only interested
in the limit t → t′ to determine the expectation values at
equal times. In this limit all functions coincide.

Appendix A.1. Symmetric case

In the symmetric case, i.e., s = 0, we obtain

Gx2(E) =
(E2 −Σ33)− 9 (η−ν)σ2

4α2
3ω

(E2 − E2
1)(E2 − E2

2)
,

Gp2(E) =
ε2(E2 −Σ33)− 9 (η+ν)(λ−ω3σ)2

4α2
3ω5

(E2 − E2
1)(E2 − E2

2)
,

G:x4:(E) =
1
4ω2

(
−2(λ− 2gω + 3ω3(α2E +Ω))

w3(E2 − E01E02)

+
τ

4α2
3ω

6(E2 − E2
1)(E2 − E2

2)

)
,

G:p4:(E) =
ω2

4

(
−2(λ− 2gω + 3ω3(α2E +Ω))

w3(E2 − E01E02)

− τ

4α2
3ω

6(E2 − E2
1)(E2 − E2

2)

)
,

G:p2x2:(E) =
α2

2ω3

E + E02

E2 − E01E02
, (A.2)

where we have defined the following abbreviations:

ε2 = µ2 + 12g〈x2〉 ,

α2 =
〈p2〉+ ω2〈x2〉

2ω
,

α3 =
9
2
〈: p2 x2 :〉 − 3 +

9
4ω2

(〈: p4 :〉+ 4〈p2〉ω
+4ω3〈x2〉+ ω4〈: x4 :〉) ,

σ = 〈p2〉 − ω2〈x2〉 ,

λ = 2g
(
− 3〈p2〉(1− 2ω〈x2〉) + ω(−2

−6〈: p2 x2 :〉+ 3ω(5〈x2〉 − 2ω〈x2〉2

+2ω〈: x4 :〉))
)
+ ω(ω2 − ε2)σ ,

Σ33 =
η2 − ν2

α2
3

,

η = 〈[bbb, [H, b†b†b†]
]〉 ,

ν = 〈[bbb, [H, bbb]]〉 ,
Ω =

1
ω3

(
λ− 4ω3(〈p2〉+ ε2〈x2〉) + 22gω

+16ω2g(−6〈x2〉+ 3ω〈x2〉2 − 2ω〈: x4 :〉)
)
,

τ = 6α3

(
9λ2σ + λ(−27σ2 + 4(α3E + η + ν)

×(E − ω))ω3 + 2σω5
(
ω

(−4E(α3E + η) + 9σ2

+2(α3E + η + ν)ω) + 2(α3E + η − ν)ε2
) )

,

E01,2 =
Ω

α2
± λ− 2gω

α2ω3
. (A.3)

The energies E2
1 and E2

2 are the solution of the following
equation:

E4 +
E2

4α3ω3

(
18σ(λ− σω3)− 4α3ω

3(Σ33 + ε2)
)

+
1

16α2
3ω

6

(
(81σ2 + 36ω(η + ν))(λ− σω3)2

+ ε2ω5(36σ2(η − ν) + 16α2
3ωΣ33)

)
= 0 . (A.4)

〈x3〉 and 〈p2 x〉 vanish because of parity. 〈: O :〉 denotes the
expectation value of the normal ordered product of the op-
erator O. If |HF〉 is taken as ground state, those expecta-
tion values obviously vanish and 〈x2〉=1/(2ω), 〈p2〉=ω/2.
From the gap equations, eqs. (20),(21), we obtain the fol-
lowing condition:

ω2(〈p2〉 − ε2〈x2〉) + 3g − 12gω〈x2〉(1− ω〈x2〉)
−4gω2〈: x4 :〉 = 0 . (A.5)

Appendix A.2. Deformed case

In the deformed case, i.e. s �= 0, we obtain

Gx2(E) =
E2 − βκ

α2
2

(E2 − E2
1)(E2 − E2

2)
=

1

E2 − ε2 + 9g2δ2(β−κ)
ω2α2

2

1

E2− βκ

16ω4α2
2

,

Gp2(E) = ε2Gx2(E) +
288δ2g2κ

α2
2

1
(E2 − E2

1)(E2 − E2
2)

,

G:x3:(E) = −6δg
(
α2

2E
2 + 4ωκ+ 3E(κ+ α2ω)

)
α2ω2(E2 − E2

1)(E2 − E2
2)

,

G:p2x:(E) =
6δg

(
α2

2E
2 − E(κ+ α2ω)

)
α2(E2 − E2

1)(E2 − E2
2)

, (A.6)

where we have introduced in addition the following abbre-
viations:

ε2 = µ2 + 12g(s2 + 〈x2〉) ,
β = 4

(〈p2〉+ 〈x2〉(ε2 + 12g〈x2〉)− 18gs〈: x3 :〉) ,

δ = 2s〈x2〉 − 〈: x3 :〉 ,
κ = 2

(
〈p2〉

(
1 +

ε2

ω2

)
− 12gs〈: x3 :〉+ (ω2 + ε2)〈x2〉

−24g
ω2

〈: p2 x :〉s
)

,

E2
1,2 =

1
2


ε2+

βκ

α2
2

±
√(

ε2− βκ

α2
2

)2

+8(12gδ)2
κ

α2
2


. (A.7)

In this case we end up with two gap equations, one deter-
mining the value of s,

s3 + s

(
3〈x2〉+ µ2

4g

)
− 〈: x3 :〉 = 0 , (A.8)
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and another one concerning ω,

〈p2〉 = ε2〈x2〉 − 12gs〈: x3 :〉 . (A.9)

Note that the expression for Gx2(E) given in eq. (A.6) can
be interpreted as a free “propagator” with an additional
“self-energy” depending on E. Similar interpretations are
possible for all the other expressions.
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